Membranous Nephropathy
New Insights Regarding Pathogenesis

Laurence H. Beck, Jr., M.D., Ph.D.
Department of Medicine, Renal Section

Boston Medical Center
Boston University School of Medicine
Boston, MA
Membranous Nephropathy

- A common cause of adult nephrotic syndrome
- Organ-specific, autoimmune disease
- Variable clinical course
 - Spontaneous remission
 - Persistent proteinuria
 - Progression to ESRD
- Pathological hallmark = subepithelial deposit

PODOCYTE
Injured podocytes cannot maintain an effective filtration barrier.

EXTRINSIC STRESS

INTRINSIC STRESS

FOOT PROCESS EFFACEMENT

PROTEIN
MN: Common pathology but different etiologies

Primary (Idiopathic)
- 75%

Secondary
- Lupus
- Hepatitis B
- NSAIDs
- Malignancy
- Toxins (Mercury)
- Others
- 25%
Images courtesy of Dr. Joel Henderson, Boston University Medical Center
An identical pattern would be present for complement factor C3.
HEYMANN NEPHRITIS: Experimental MN in a rat model

Anti-Fx1A
- α-megalin
- α-RAP
- α-Crry, α-CD59

Downstream signaling
- Calcium influx
- PLC, PLA₂ activation
- Lipid peroxidation
- ↑ ROS
- ↑ AA metabolites
- Cytoskeletal changes

Anti-podocyte antibodies ➔ **Subepithelial deposits** ➔ **Complement activation** ➔ **C5b-9 insertion** ➔ **Sublethal podocyte injury**

MEGALIN is the target antigen in this rat model

What is the target antigen in human disease??
Antenatal Membranous Glomerulonephritis Due to Anti–Neutral Endopeptidase Antibodies

- First evidence that pathogenesis of human MN involves reactivity of circulating antibodies with a podocyte-expressed antigen
- Mechanism (in this case) involves feto-maternal alloimmunization to *neutral endopeptidase* (NEP)
- Neonatal disease remitted after clearance of maternal antibodies
Identification of human antibodies reactive with glomerular proteins

S-S bonds must remain intact for human autoantibodies to detect MN antigen

Separate proteins by SDS-PAGE

Western blot to look for reactive bands

Identify by mass spec analysis
M-Type Phospholipase A₂ Receptor as Target Antigen in Idiopathic Membranous Nephropathy

Laurence H. Beck, Jr., M.D., Ph.D., Ramon G.B. Bonegio, M.D., Gérard Lambeau, Ph.D., David M. Beck, B.A., David W. Powell, Ph.D., Timothy D. Cummins, M.S., Jon B. Klein, M.D., Ph.D., and David J. Salant, M.D.
Evidence to support the pathogenicity of anti-PLA$_2$R:

- 70-80% prevalence of circulating anti-PLA$_2$R in **clinically-active** primary MN
- Co-localization of PLA$_2$R and IgG4 within immune deposits on biopsy
- Elution of anti-PLA$_2$R from biopsy tissue
- Strong association with clinical disease activity
- Exceptional case of MN with monoclonal IgG3κ anti-PLA$_2$R; IF staining of deposits revealed only IgG3κ
- Genetic association of MN with $PLA2R1$ by GWAS
Primary MN can now be divided into subgroups

Primary (Idiopathic)
- 75%

Secondary
- Lupus
- Hepatitis B
- NSAIDs
- Malignancy
- Toxins (Mercury)
- Others

PLA₂R-associated
- 25%

Truly idiopathic
Disease initiation in MN

1. Onset of (auto)immune disease activity
2. Subepithelial deposits
3. Podocyte damage and foot process effacement
4. Proteinurria
Recurrent MN: A typical timeline

Proteinuria (g/day): 0.2 1.7

* POSITIVE anti-PLA$_2$R

2004
MN on native kidney biopsy

2007
ESRD

2010
LRD kidney transplant
Recurrent MN: A typical timeline

Proteinuria (g/day): 0.2 1.7 4 4.6

* POSITIVE anti-PLA$_2$R

2004
MN on native kidney biopsy

2007
ESRD

2010
LRD kidney transplant

2011
Progressive rMN

Recurrent MN
Immunological remission precedes clinical remission

Disease resolution in MN

Subepithelial deposits

Anti-PLA$_2$R

Proteinuria

Podocytes slowly regain normal morphology and function
Unresolved issues in MN pathogenesis

Immunologic initiation

- **Genetics**
 - PLA2R1
 - HLA region

Complement-mediated cytotoxicity?

- Interference with normal function of PLA$_2$R?

Progression factors

- ?

Persistent proteinuria

- ?

Remission

- ?

Relapse

- ?

ESRD
References

